Nuclear and Particle Physics - Problem Set 3 - Solution

Problem 1)

By setting
$$E' = \frac{E}{1 + \frac{2E}{M}(\sin \theta/2)^2} = 0.683 \text{ GeV}$$
, I find $Q^2 = 3.413 \text{ (GeV/c)}^2$ and hence $\tau = \frac{Q^2}{4M^2} = 0.968$.

Using Eq. 5.39 in the book (replacing $|\mathbf{q}c|^4$ with Q⁴) and multiplying with the recoil factor E'/E as indicated in Eqs. 6.1-6.2 in the book, I get a Mott cross section of $4.53 \cdot 10^{-8}$ fm² = $4.53 \cdot 10^{-34}$ cm² = 453 pb (picobarn).

From Eq. 6.12 in the book, we have
$$G_E^p = G_{Dipole} = 0.0297$$
 and $G_M^p = 2.79$ $G_{Dipole} = 0.0828$.

Plugging it all into Eq. 6.10 yields
$$d\sigma/d\Omega = 7.74 \cdot 10^{-36} \text{ cm}^2 = 7.74 \text{ pb (pico-barn)}$$
. Very tiny!

Problem 2)

Using the "point-like target" approximation, we calculate $d\Omega = (0.01\text{m})^2/(0.2\text{m})^2 = 0.0025$ sr, hence $d\sigma = d\sigma/d\Omega \cdot d\Omega = 1.94 \cdot 10^{-38}$ cm². For the described target, we have L = 5 cm, $\rho = 0.07085$ g/cm³ [Wikipedia], atomic weight = 1.008u [Wikipedia] and $N_A = 6.022 \cdot 10^{23} =>$ areal density is $2.116 \cdot 10^{23}$ protons/cm². The beam flux is $100 \, \mu\text{A/e} = 6.242 \cdot 10^{14}$ electrons/s. Hence the luminosity is $1.321 \cdot 10^{38}/\text{cm}^2/\text{s}$. Multiplying this with the cross section above, I get a count rate of 2.56/s. To achieve a precision of 10%, I need to get $\frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}} = 0.1$, so N > 100. This requires only 39 seconds of data taking, which is truly amazing given how small the cross section is!